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Equilibrium Polymerization in a Solvent: 
Solution on the Bethe Lattice 
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The lattice model for equilibrium polymerization in a solvent proposed by 
Wheeler and Pfeuty is solved exactly on a Bethe lattice (core of a Caylay tree) 
with general coordination number q. Earlier mean-field results are reobtained in 
the limit q ~ or, but the phase diagrams show deviations from them for finite q. 
When q = 2, our results turn into the solution of the one-dimensional problem. 
Although the model is solved directly, without the use of the correspondence 
between the equilibrium polymerization model and the dilute n--+ 0 model, we 
verified that the latter model may also be solved on the Bethe lattice, its 
solution being identical to the direct solution in all parameter space. As obser- 
ved in earlier studies of the pure n ~ 0 vector model, the free energy is not 
always convex. We obtain the region of negative susceptibility for our solution 
and compare this result with mean field and renormalization group (e-expan- 
sion) calculations. 

KEY WORDS: Equilibrium polymerization; polymers; n-* 0 vector model; 
Bethe lattice; Cayley tree phase transitions; critical phenomena; magnetism. 

1. I N T R O D U C T I O N  

The  r e c o g n i t i o n  tha t  the  p r o b l e m s  of  e q u i l i b r i u m  p o l y m e r i z a t i o n  (la'Ib/ and  

e q u i l i b r i u m  p o l y m e r i z a t i o n  in a so lven t  (2a'2bl can  be m a p p e d  in to  the  n ~ 0 

l imi t  o f  a pu re  o r  d i lu te  n -vec to r  m o d e l  of  m a g n e t i s m ,  fo l lowing  p i o n e e r i n g  

w o r k  by De  G e n n e s  (31 and  Des  C lo i zeaux ,  (4~ has m a d e  it poss ib le  to s tudy  

these p r o b l e m s  f r o m  the  p o i n t  of  v iew of  the m o d e r n  t heo ry  of  cr i t ical  

p h e n o m e n a ,  which  is well  e s t ab l i shed  for  m a g n e t i c  systems.  It  is par -  
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2 Stilck and Wheeler  

ticularly useful to explore this analogy because the symmetries in the 
magnetic systems are usually much more visible than in their polymeric 
counterparts. It is remarkable that mean-field calculations for the magnetic 
models become identical with the earlier theories of Gee (51 and Tobolsky 
and Eisenberg t6~ for pure sulfur and Scott (v) for sulfur solutions, probably 
the most studied physical realizations of equilibrium polymerization in the 
absence and presence of a solvent. The symmetry of the underlying magnet 
allowed the lower critical solution temperature in Scott's theory to be iden- 
tified as a tricritical point in the corresponding magnet. In addition, the 
analogy between magnetic and polymeric models allowed the application 
of techniques of the modern theory of critical phenomena, well established 
for magnetic systems, to the study of polymerization. The use of non- 
classical critical exponents from the magnetic theory has resulted in 
improved descriptions of the anomalies in the heat capacity, (1"'81 density] 9) 
and dielectric constant (1~ of pure sulfur and the fraction of polymerized 
material in sulfur/1"'8/ and polytetrahydrofuran./~11 For a recent review on 
the experimental situation in this field we refer to the article by Knobler 
and Scott. I~21 

In this paper we examine a different kind of systematic improvement 
on the mean field approximation to the magnet and to the equivalent 
Gee i5t Tobolsky-Eisenberg 161 theory. We solve the problems of 
equilibrium polymerization and equilibrium polymerization in a solvent on 
the Bethe lattice, that is, we study the behavior of the model on sites deep 
inside a Cayley tree with general coordination number q. Although it is 
possible to study the model on a complete Cayley tree, it is expected that 
the results for that case will be qualitatively different from the ones obser- 
ved on lattices with translation invariance, t~31 due to the nonnegligible 
effects of the surface sites, even in the thermodyna~nic limit, in the Cayley 
tree. In the so-called Bethe lattice calculations the model is defined on the 
Cayley tree, but only contributions from sites in the core of the tree are 
considered. For the nearest neighbor Ising model, the Bethe-Peierls 
approximation on a regular Bravais lattice with the same coordination 
number is recovered, t~4~ Our approach is quite similar to the one presented 
for the Ising model by Baxter. t151 

Although our solution for the equilibrium polymerization in a solvent 
is direct, without the use of the analogy with the corresponding magnetic 
model, we show in Section 6 that the solution of the dilute n--, 0 vector 
model leads to precisely the same results. Recently, it was suggested that 
the mapping between the two models in the absence of a solvent should 
break down in the low-temperature region/~6) and that the polymeric 
system should display a "collapsed" phase in this region. We have shown 
elsewhere (Iv) that, at least to first order in the e expansion, there is no 
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evidence of such a phenomenon. We see no evidence for such a breakdown 
here either. The identity between the direct solution of the polymeric 
problem on the Bethe lattice and the solution of the corresponding n--* 0 
vector model on the same lattice is valid in all field-variable space, as may 
be verified by comparing the results of Sections 3 and 6. 

There are two limits where our solution may be compared with earlier 
results. In the limit of infinite coordination number, we recover the results 
of the mean-field approximation to the model, (~,lb'za,2b,5 7) whereas when 
the coordination number is equal to two, our solution is the exact solution 
of the one-dimensional model, which was already thoroughly studied in the 
case of equilibrium polymerization in the absence of a solvent. {18} In 
general, Bethe lattice solutions seem to reduce to the man-field solutions in 
the limit q ~ oo for models with nearest neighbor interactions only, as may 
be verified explicitly for the Ising model, {~9) the Blume Emery-Griffiths 
model (~~ (dilute n = 1 model), and the present model. [For  models with 
interactions beyond first neighbors, like the A N N N I  model, (21) the 
corresponding model on the Cayley tree is not uniquely defined and the 
appropriate q ~ oo limit may be different from the mean-field solution.] 
Also, we compare our result with a calculation by Gujrati, (22) which 
corresponds to the solution of the model in the absence of a solvent on the 
q = 3 Bethe lattice. 

In Section 2 we give a brief definition of the model. A more detailed 
description may be found in Refs. 2a and 2b. The direct solution of the 
model on the Bethe lattice is presented in Section 3, in terms of a two- 
dimensional mapping. Also, we obtain expressions for the relevant densities 
and look at the solutions in the various limiting situations. We consider in 
some detail the particular case when no solvent is present in Section 4, and 
compare our results with the ones obtained by Gujrati (22} for q = 3. Phase 
diagrams are obtained and presented in Section 5 for the general model, 
and the effect of finite coordination number is apparent  in the comparison 
of these phase diagrams with the man-field results. It should be stressed 
that, from the point of view of critical exponents, the Bethe lattice solution 
is obviously classical. In Section 6, we solve the dilute n--* 0 vector model, 
which corresponds to the model for equilibrium polymerization in a 
solvent on the Bethe lattice. We find that this solution is identical to the 
direct one throughout all of the parameter  space, no breakdown of the 
analogy between models being observed. 

We also examine there the locus on which the susceptibility )~ of the 
n ---, O vector model on the Bethe lattice vanishes, and find that its behavior 
with the coordination number q is consistent with a recent conjecture con- 
cerning the shape of this locus for the n ~ 0 vector model on translationally 
]nvariant lattices. We also show how the shape of this locus in mean-field 
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theory passes continuously to the quite different shape found in the exact 
solution of the model in one dimension. A bier discussion of our results is 
given in Section 7. 

2. D E F I N I T I O N  OF T H E  M O D E L  

We consider a model for equilibrium polymerization in a solvent 
defined on a lattice that was proposed by Wheeler and Pfeuty 12a'2bt to dis- 
cuss equilibrium polymerization in sulfur and is identical, in the mean-field 
approximation, to the earlier theory of Scott. ~7) 

The configuration of the lattice is defined as follows: Each site may be 
occupied either by a solvent molecule (vi= 0) or by a monomer (vi= 1). 
The monomers may be in two states, active or inactive, and active 
monomers in first-neighbor sites may connect, thus forming chain 
polymers. In the particular case of sulfur solutions the monomers are $8 
rings, which may be open (active) or closed (inactive). The interaction 
energy between first neighbors will be given by Eoo, Eol, and Ell for 
solvent-solvent, solvent-monomer, and monomer-monomer  pairs, respec- 
tively. The statistical weight of a chain polymer with m sites (m - 1 bonds) 
is given by 

K 1 if m = 1 
(2.1) 

2KI(K,p),,, i if m > l  

The partition function for this model will be 

Y= Z Z Z Z exp[- -(EooXoo + Eo, No, + E,, U,, )/kT] 
IV/} Np N b N I 

• [exp(/,, - i,o)/kT] s'' "(2K, )Np(K'p)N~(1/2) ~v' F(Np, Nh, N1, N; {vi}) 

(2.2) 

The sum ~I,.,', is over all site configurations (v~=0 or v~= 1 on each site), 
and Noo, N0~, and N11 are numbers of nearest neighbor solvent-solvent, 
solvent-monomer, and monomer-monomer  pairs, respectively, for a given 
site configuration, F(Np, Nh, NI, N; {v,}) stands for the number of dis- 
tinguishable ways of placing Np polymers containing a total number Nb of 
bonds, N 1 of which are one-site polymers, on the N-site lattice for a given 
site configuration {vi}. The quantities/,~ and #o are the chemical potentials 
for monomers and solvent molecules, respectively. One may think of 
(2K~) ~/2 as playing the role of an "activity" of a polymer end and K~ as 
playing the role of a statistical weight or activity for bonds. Both K1 and K'p 
contain a factor accounting for the number of ways to arrange the 
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polyatomic "monomer" unit within a cell. The factor (1/2) N~ arises because 
for single-cell polymers there are configurations that differ only in that the 
ends of the monomer are interchanged. 

3. D I R E C T  S O L U T I O N  OF THE M O D E L  ON T H E  
BETHE LATTICE 

As in Baxter's ~15) solution for the Ising model on the Bethe lattice, we 
consider a Cayley tree with coordination number q and M generations (see 
Fig. 1) built by attaching q rooted subtrees of M generations to a central 
site. We then proceed to find recursion relations for the partial partition 
functions of subsequent generations. The subtrees will be classified into 
three categories, according to the configuration of their root (full dots 
stand for solute molecules and empty ones for solvent molecules) 

" ~  s S 

~s S. 
b: occupied bond on root 

u0: unoccupied bond on root, solvent on site 

Ul" unoccupied bond on root, monomer on site 

Let gM(c) be the partial partition function of an M-generation subtree, 
which is the sum (2.2) for all configurations of the subtree compatible with 
a given root configuration c(b, Uo or ul). Figure 2 depicts how an ( M +  1)- 
generation subtree may be built by attaching q - 1  of the M-generation 
subtrees to a new root site and bond. This process leads to the following 
recursion relations for the partial partition functions of the subtrees: 

Fig. 1. A Cayley tree with q = 3 and M = 2 generations. 
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h 

Fig. 2. Construction of a (q = 3, M = 3) subtree from two (q-  3, M= 2) subtrees. 

gM +1 (b)  ~- col ( 2 K I  K'p)1/2 [O)o 1 gM(UO ) _}_ (,OI 1 gM(bl I ) ]  q - 1 

+ ( q -  1)co~,o,K'pgM(b)[o~o, g~(Uo)+coll gM(ul)] "-2 

gM + l(u0) = [COOO gM(Uo) + COOl gM(ul)]q-' 

gM + I(Ul)=COl(1 + Kl)[coOl gv(Uo) + coll gM(Ul) ] q 
(3.1) 

+ ( q -  1) collcol(2K1K~,)i/2gM(b ) 

X [coO1 gM(UO) + coIl  gM(1AI)] q-2 

+ l ( q _  1)(q-2)co21coIK'pg2M(b ) 

x [COol gM(Uo)+co~l gM(ul)] ~ 3 (3.1) 

where 

( L )  1 = exp  [ (/~ 1 - / ~ o ) / k  T] 

coi,./= exp( - EjkT) ,  i , j = 0 ,  I 
(3.2) 

The factor col in gM+~(b) and g.~+l(Ul) accounts for the fact that a 
monomer rather than a solvent occupies the site. For gM+l(Uo), the fact 
that the site is occupied by a solvent and that (therefore) the bond is empty 
means that each of the q -  1 M-generation subtrees above it must be either 
occupied by a solvent [contributing COoogM(Uo)] or by a monomer  that 
does not bond to it [contributing cool g~(u l ) ] .  For gM+ ~(b), the first term 
accounts for the various ways in which a chain may start at the (M + 1 )th 
generation and the second with the number of ways in which it may con- 
tinue from above. For gM+l(Ul) the first term accounts for the ways of 
obtaining an isolated monomer  at the ( M +  1)th generation, the second 
with the ways of terminating a chain at the ( M +  1)th generation, and the 
third with the ways in which a chain may pass through the ( M +  1)th 
generation site joining the M-generation subtrees. 
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It is convenient  to define the quantit ies 

RM -- ( K ' S 2  gM(b) 
gM(ul) ' SM 

cooo g~(uo) 
cool gv(ul)  

(3.3) 

and the paramete rs  

cox = exp [(2Eol - Eoo - EI~ ) / kT]  = cooo(D 1J(Do21 = exp 

coz - exp{ [#1 - kto - q(Eol - Eoo)] /kT}  = col(coOl/(Doo) ~ = exp 
(3.4) 

The recursion relations for RM and S ,  may  then be obta ined f rom (3.1) 
and are given by 

RM+~ = {(2K1) ~/2 K'p[SM+cox]  q 1 + ( q _  1) (DxK'pRM[SM+COX] q 2} 

• {(1 + xI)[SM + (Dx] ~-1 

+ ( q -  1) 6OR(2K1) 1/2 R M [ S  M + cox] q 2 

+ � 8 9  2 2 coxRM[ SM + COR].- 3} 
(3.5) 

SM+I = [ S M +  1] ~ - I  

x (coa{(1 + K1)[SM + c o x ]  ~ 

+ ( q -  1)(Dx(2K~)I/2 R M [ S M  +(Dr] q 2 

+ � 8 9  2 2 q ~RRMI]S. + c o x ] - , } ) 1  

Examina t ion  of the exact solution for M =  1 reveals that  the appropr ia te  
initial condit ions are 

1 - - ( D  R 
Ro = 0, So - (3.6) 

1 - COo0/(DOl 

The par t i t ion function for the model  on the M-genera t ion  Cayley tree 
is obta ined by considering the opera t ion  of a t taching q subtrees to the 
same central site. This leads to 

YM = bOoo gM(uo) + coo, gM(u~ ) ]~ + (D1(1 + K1)[O~oi gM(uo) + (Dll gM(u,)] ~ 

+ q(DI(2Kj K;,) 1/2 coil g~a(b)[(Dol gM(Uo) + COil gM(Ul)] q 1 

+ �89 1) (DiKp(Dllg~(b)[(DolgM(uo)+(D11gM(u1)]  2 "~ (3.7) 

The origin of each term in the par t i t ion function is shown graphical ly in 
Fig. 3 for a Cayley tree with q = 6. 
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 , c0'2v0 0r 

4-*' ' ~ [CUOOgM(UO) + QJOlgM(~JI)] q 

+ ' ' '  ~ Q)t(~-+KI)[CO01gM(U0)+QJIIgM(ul)] q 

+ + + . . .  ~ q(,Ot(~KiK'p)~'/2C011gM(b)[W01gM(U0)+ OJit(:JM(tJl) ] 

~ ~ q(q-I) ,~,,,,2 2 . +OJ .q-2 + -F +. - .  ~ ~u1%u JLyMu [Q)01gM(LIO) IIgM(Ul)J 

Fig. 3. Configurations of the vicinity of the central site that contribute to the partition 
function. (0) Solute molecules, (�9 solvent molecules; heavy lines are occupied by bonds. 

Now the thermodynamic properties of the model on the complete 
Cayley tree may be obtained from the partition function (3.7) after perfor- 
ming the thermodynamic limit M ~ oo. As was stressed in the introduction, 
however, the properties of the model on the Cayley tree are expected to be 
qualitatively different from those on lattices with translation invariance. So, 
following the usual procedure, (13 ~5) we will concentrate our attention on 
the behavior of the model deep inside the tree, where all sites have the 
same coordination number q. The quantities RM and SM will approach a 
fixed point R and S in the limit M - *  oo, and we will be interested in the 
thermodynamic properties of the model in this limit. Looking at the con- 
tributions to the partition function of the central configurations of the tree 
in Fig. 3, we may write down the average number of monomers, polymers, 
and bonds per site Xm, Xp, and xb, respectively, in the central region. For  
the central site of the M-generation Cayley tree we get 

Xp, M = < Np > /N  = ~o 1 {K1 [0%, g M(Uo) + OH g m(U, ) ]q 

+ �89 1/2 (~11 gM(b)[COolgM(Uo) + O)l~ gM(Ut)] q ~} YM l 

X~.M = < Nb ) I N =  o), {�89 K'p) w2 o)lt gM(b ) 

X[CnmgM(Uo)+COllgM(Ul)]q l+�89 2 , 1)~o H K'p gZM( b ) 

x [~Ool gM(Uo)+O)11 gM(Ul)] q-2 } Y;t 1 (3.8) 
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In the calculation for Xp, we count one polymer if an unbonded active 
monomer is on the central site and only one-half polymer if a chain con- 
sisting of more than one monomer ends there. This ensures that if a similar 
average is performed at each site and these are summed, each polymer is 
counted exactly once. In terms of the variables R and S, in the ther- 
modynamic limit these expressions may be rewritten 

I S +  1] q 
X m = l  

D 
+~q(2Kx) coxR[S+cox]  q } o o 2 { K l [ S + c o R ] q  1 1/2 1 

Xp = D 

Xb~- 

(3.9) 

co2{�89 + coR]q i + �89 _ 1) co,~R2[S + cox] q-2 } 

D 
where 

D =  [ S +  1]q + 6o~{(1 + K~) [S+  co~:]q + q(2K~) 1/2 cox:R[S+ cox]q-1 

+ �89 1)co~R2[S+cox] q-2 } 

and where R and S are fixed-point values of the recursion relation (3.5) 
( R M + I = R M = R  and S M + I = S M = S ) .  The fraction of core sites incor- 
porated into polymers will be 

~ u = x b + X p  (3.10) 

It is straightforward to show that the same averages are obtained for 
nearest neighbor sites to the central site in the thermodynamic limit and, as 
happens in the case of the Ising model, (23) we believe that these results are 
valid for sites within any finite range of the central site if the ther- 
modynamic limit is taken first. 

We have, therefore, reduced the solution of the model on the Bethe 
lattice to a two-dimensional mapping problem. For given values of the 
parameters K~, K'p, co~:, and co~, the variables R M and SM will attain a 
fixed point (R, S) in the thermodynamic limit M ~  oo and the relevant 
properties will be given by the values of expressions (3.9) at the fixed point. 
In Sections 4 and 5 phase diagrams are obtained using this procedure, but 
first it is instructive to look at some limits of our Bethe-lattice solution. 

3.1. Pure M o n o m e r  Limit 

The absence of any solvent may be accomplished by taking the limit 
col ~ 0% or co~ ~ oo. The recursion relations (3.5) then reduce to 

R M  + I -- (2K1) 1/2 K'p + (q - 1) I ( 'pR M 

(1 + KI) + ( q -  l )(2K1)l/2 Rm + l(q - 1 ) ( q -  2) R~/ 

SM+I = 0  (3.11) 
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The thermodynamic properties in (3.9) will be given by 

Xrt 7 ~ 1 

Xp 
K1 + �89 R 

1 + Kl + q(2Kl)l/2R + ~q q - 
1 ( 1 ) R  2 

�89 R + �89 - 1)R 2 
X b -- 

I + KI +q(2K1)mR + ' q - 1 ) R  2 

The behavior of the model in this limit is considered in Section 4. 

(3.12) 

3.2. Lattice Gas Limit 

The occurrence of polymerization may be suppressed by letting K1 and 
Kp vanish. The recursion relations (3.5) turn into 

I S  M -~- 1 ]q  1 
RM+ 1 =0,  SM+ 1 Coa[SM+cOX]u_ 1 (3.13) 

and we get 

[ S + l I  ~ 
Xm = 1 -- I S +  1]q+ co~[S+~oX] q 

X p = x b = O  

(3.14) 

As expected, the Bethe lattice results for an Ising lattice gas are recovered 
in this limit. 115/ 

3.3. One-Dimensional  Limit 

When q = 2 ,  the Bethe lattice solution corresponds to the exact 
solution of the one-dimensional model,/18/ Some results for this limit may 
be found in Appendix A. 

3.4. Mean-F ie ld  Limit (q -~ao)  

By properly taking the limit of an infinite coordination number, we 
recover the already known mean-field results for the equilibrium 
polymerization in a solvent/~'2a'2bl It is helpful to define the quantities 

QM=--qRM, Kp=-qX'p, ~-=q~2 (3.15) 
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Now, the recurs,on relations (3.5) may be rewritten in terms of these 
parameters. In the limit q ~ oo, with Kp and K constant, they become 

(2K 1 )~/2Kp + Kp QM(1/[SM + 1 ] ) 
QM+~ = 1 +K, +(2K,)'/2QM(I/[SM+ i ] ) + '  2 =Q~/[SM + I ]2 

exp [ - ~/(1 + SM) ] 
SM+I (92{1 + K ,  + (2K1) 1/2 QM/[SM+ 1] +�89 1] 2 } 

(3.16) 

In the thermodynamic limit, a fixed point (Q, S) will be reached, given by 

Q _  

S= 

Kp[(2K~) ~/2 + Q/(1 + S)] 

l + �89 '/2 + Q/(1 + S)] 2 
(3.17) 

1 

o93 exp [ if/(1 + S)] { 1 + �89 [ (2K~)~/2 + Q/(1 + S)]2 } 

The densities (3.9) in the q ~ oo limit will be 

X r n =  1 
exp [ - f f / ( l  + S ) ]  

e x p [ -  #/(1 + S)] +o)z{ 1 +K,  + (2K,) ~/2 Q/(1 +S)+ �89 + S ]  2 } 

(93{K i + �89 1/2 Q/(1 + S)} 
XP- e x p [ - # / ( 1  + S ) ]  + cgz{ 1 -}-K 1 +�89 '/2 Q/(1 +S)+�89 + S ) ]  2 } 

(9~{�89 '/2 Q/(1 + S) + �89 + S)] 2 } 

xb = exp [ - if/(1 + S)] + co 3{ 1 + X~ + �89 Q/(1 + S) + �89 + s)]2 } 

(3.18) 

Now we notice that 

Xm = 1/(1 + S) (3.19) 

so that S may be eliminated, resulting in 

Q Kp [(2K~)t/~+Qxm] 
1 + �89 + QXm]2 

(1--Xm) '= l+co3[exp(#xm)]{ l+ �89  2} (3.20) 

oJj[exp(ffxm)] �89 (2K,) ~/2 + Q~s] 2 
Xp + Y b - -  

1 + co~[exp(ffXm)] { 1 + �89 1/2 + Q~b,] 2 } 

To compare these results with the ones obtained by Wheeler and 
Pfeuty, (2a'2b) it is necessary to rewrite them using dilute n ~ 0 vector model 
parameters, where now q is the (finite) coordination number of the trans- 
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lationally invariant lattice on which the mean field approximation is being 
made: 

~=qK,  Kp=qY, K~ =h2/2 (3.21) 

xp + xb= lm(qYm + h), x,,,= xs (3.21) 

and, eliminating Q in the expression (3.20), we have 

(1 - xs) -1 = 1 + co~[exp(qKxs)] [1 + l(h + qJm) 2 ] 

coz[exp(qKxs) ](h + qJm) 
r n =  

1 + coz[exp(qKx,)][1 + l(h + qJm) 2] 

(3.22) 

These are the mean-field results for the dilute n ~ 0 vector model obtained 
by Wheeler and Pfeuty [expressions (5.14) and (5.15) of Ref. 2b]. 

4. THE L IMIT ING CASE OF E Q U I L I B R I U M  P O L Y M E R I Z A T I O N  
IN THE ABSENCE OF A SOLVENT 

In this section we will discuss the particular case where no solvent is 
present, which was already considered by Gujrati (22) when q = 3. As we saw 
in Section 3, in the limit co 3--* oo the solution of the model reduces to a 
one-dimensional mapping (3.11). In the case of liquid sulfur, the 
appropriate value for the statistical weight K~ is very small (~a'lb) 
( K  l ~ 10-12) .  Thus, we will concentrate our attention on the results with 
KI ~ 0 .  In this limit, the fixed points of Eq. (3.11) will be the solution of 

l ( q _  1 ) ( q _ Z ) R 3 +  [ 1 - ( q -  1)K'pJR=O (4.1) 

which are 
~ 2 [ ( q -  1)K'p- 1]} ~/2 

R = 0 ,  --+[ ( q -  1 ) ( q -  2) (4.2) 

corresponding, respectively, to the unpolymerized and polymerized phases. 
The critical temperature will be given by 

K'p.(. = 1/(q - 1 ) (4.3) 

The fraction of monomers incorporated into polymers is given by 

( q -  1 ) K p -  1 
0~, = Xp + x b = (q _ 1)K~ - 2/q (4.4) 
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We m a y  introduce a reduced tempera ture  r th rough 

1 ? ( l + ) j  K~ = q _-----]- exp (4.5) 

a parametrization appropriate for liquid sulfur and sulfur solutions. (2a'2b) 
Expression (4.4) may then be rewritten as 

r exp[3.70(1 - l /T)]  - 1 

exp[3.70(1 - l /T)]  -- 2/q 
(4.6) 

In Fig. 4 we present  some curves of ~b~ versus r. The behavior  of G 
becomes steeper as the critical t empera tu re  is app roached  for decreasing q. 
This is in accord with the expectat ion that  with increased range of 
correlat ions the curve will approx ima te  that  of  t ranslat ional ly invariant  lat- 
tices where the limiting slope is infinite and is described by the nonclassical 
exponent  c~ of the n ~ 0 vector  model.  ~a'lb) Of  course, asymptot ical ly ,  qt, is 

Fig. 4. 
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always linear in ~ for r --, 1 +, since the Bethe-lattice calculation produces 
classical critical exponents. At q = 2, the step-function behavior from ~b, = 0 
to ~b, = 1 of the 1D model (~8) is recovered. 

For q =  3, our results may be compared to the ones obtained by 
Gujrati. 122/ We verified that they agree, if the proper correspondence is 
made between the formulations of the equilibrium polymerization problem 
by Wheeler and Pfeuty (lb) and by Gujrati. (24) In Gujrati's formulation, only 
polymers with at least one bond are considered. The relations between 
Gujrati's t22/variables ~c and q and the ones in our formulation are 

( 2K 1 ,] t/2 
Kp r/= (4.7) 

~c= 1 + K I '  \ I + K I ]  

and the variable x used by Gujrati in the recursion relation is related to 
our R as follows: 

X ~- R / ( ~ )  1/2 (4.8) 

The relations between the densities in our formulation (xb, xp) and those 
from Gujrati's (q~i, ~bp) are 

+ K~ (1-~b,-~bp) (4.9) 
Xb----~l, Xp=Op 1 q- K 1 

The second term in (4.9) has a clear physical meaning, corresponding to 
the density of one-site (zero-bond) polymers. {A misprint in the inter- 
mediate expression for ~b,, [expression (10) of Ref. 22] should be pointed 
out. In the numerator 2Zo(1)Z~(0)o02 should be replaced by 
2Zo(1 ) Z,(1) ZI(O)(D 2 . } 

5. PHASE D I A G R A M S  

It is convenient to classify the fixed points (for K1 -~ 0) of the recur- 
sion relations (3.5) into two categories: 

5,1. Unpolymerized Fixed Points ( R = 0 )  

We notice that (R = 0, S) is always a fixed point of Eqs. (3.5), S being 
given by 

S =  [ S +  1]q-I /(o~[S+cox] q-~ (5.1) 

This corresponds to the Ising lattice gas problem on the Bethe lattice. 
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5.2. Polymerized Fixed Points ( R ~ 0 )  

and 

In this case Eq. (3.5) will have a fixed point given by 

I S +  1] q 1 
S =  ~o~(q - 1) e ) x K ' p [ S +  cox] q-2 (5.2) 

R2 2 K ' p [ S + c o x ]  2ES + COR] 2 
- ( q -  2)co x ( q -  1 ) (q -  2)co~ (5.3) 

For the pure sulfur case, S = 0 ,  and therefore the critical 
polymerization condition on the Bethe lattice is given by Eq. (4.3). Also, 
the upper critical solution point, where two coexisting unpoiymerized 
phases become identical, is fixed by the conditions 

(&oSOS),~ = 0, (02co~/0S2)~x = 0 (5.4) 

the variable coj being given as a function of S by (5.1). Actually, the den- 
sity conjugate to the field A is Xm, but since Xm is a monotonically decreas- 
ing function of S, we may use the conditions (5.4) for locating the upper 
critical solution point. The result is 

e)x  = (~x.~ =- [q / (q  - 2)] 2 (5.5) 

If we introduce the parameter ~ by the ratio 

= TT/T, (5.6) 

between the critical polymerization temperature T* of pure sulfur and the 
upper critical temperature T~, we can establish a parametrization con- 
venient for sulfur solutions, similar to the one used by Wheeler and 
Pfeuty, (2a'2~) given by Eq. (4.5) and 

With this parametrization, the critical polymerization temperature for pure 
sulfur will occur at r - -1 ,  whereas the upper critical temperature 
corresponds to r = 1/c~. 

The results for the phase diagrams that will be presented were all 
obtained for c~= 1. One of the ways to obtain the phase diagrams is to 
study isotherms in the x,~,, z~ plane. It is more convenient to use the 
'"activity fraction" 

co~ _ e x p ( # j k T ) ( o M / ~ O o o )  q (5.8) 
f =- 1 + coa exp( l~o/kT)  + exp(pl/kT)(CoOl/e)oo) q 

822/46/1-2-2 
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in place of z]. In Fig. 5, three of these isotherms are shown, for tem- 
peratures ~ = 0.8, 1.05, and 1.2. At r = 0.8, a first-order transition between 
two unpolymerized phases is apparent. The value of ( at the transition may 
be obtained using the equal-area rule, by performing the integrations 

A dxm, or, more easily, taking advantage of the isomorphism of the model 
with the Ising model, where the transition is known to happen when the 
magnetic field vanishes. This leads to the following expression for the first- 
order boundary: 

~o~ = [(n,~]-q/2 (5.9) 

the critical point being located at, from (5.5) and (5.7), 

1 1 
r ~ = l ,  ( l = l  + [ (q_  2)/q]q , Xm,1 = ~  (5.10) 

Also, it is easy to obtain the expressions for the spinodal lines associated to 
this transition. Using the condition 

(aoj/OX),~e = 0 
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we get 

S+ ( q - 2 ) c o x - q + - { [ ( q - 2 ) c o x ; - q ] 2 - 4 c o x } ~ / 2  (51t)  
2 ' "  

and the corresponding values of coa and ~ may be calculated using (5.1) 
and (5.8). We will show later that the spinodal lines correspond to the 
stability limit of the fixed points associated with the two coexisting phases. 

At ~ = 1.05, the isotherm has two branches. For high values of ~ the 
branch corresponding to the polymerized fixed point is stable, whereas at 
the low ~ the unpolymerized fixed point will be attained. Both branches 
meet at a point described by 

s=cox[(q- 1)K'p- 13 (5.12) 

where the second-order polymerization transition occurs. This point is 
shown amplified in the insert to Fig. 5b. 

At higher temperatures ( r=  1.2, Fig. 5c), it is apparent that the 
polymerization transition has changed to first order, the spinodal line given 
by the condition 

S -  cox (5.!3) 
cox(q - 2) - (q - 1) 

The curves given by expressions (5.12) and (5.13) will be shown below to 
correspond to the stability limits of the unpolymerized and polymerized 
phases, respectively. 

Again an equal-area calculation is performed to locate the first-order 
transition. In the mean-field limit, we show in Appendix B that the 
integration can be done analytically so that the expression for the free 
energy is obtained from the fixed-point equations (3.17). For the Bethe-lat- 
tice solution, we performed the integrations numerically. 

It is interesting that no difficulty arises in the equal-area construction 
even though the isotherm consists of two intersecting branches with dif- 
ferent functional form (see Fig. 5c). In the case of fluid-solid phase 
equilibrium there is often a problem of correctly assigning the difference in 
the zero of the free energy of the two phases. That problem does not arise 
here because, as in the case of equilibrium between fluid phases, it is 
possible to analytically continue from one phase to the other around the 
(tri) critical point, avoiding the first-order phase transition altogether. In 
the present case this involves continuing through the polymerization trans- 
ition, across which Xm, A, and the free energy are all continuous. 

It should be stressed that the validity of the equal-area construction 
depends upon the existence of an underlying thermodynamic potential 
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from which the various densities can be obtained. This is, of course, cer- 
tainly true if the densities corresponding to the exact results for the full 
Cayley tree are considered, but is by no means so simple to guarantee for 
the averages calculated on interior sites. For the unpolymerized branch of 
the solution of the equilibrium polymerization problem on the Bethe lat- 
tice, the existence of an underlying potential is assured, since the model is 
isomorphic to the Ising model in this case, whose free energy on the Bethe 
lattice was obtained by Thompson. (~9) We did not verify this analytically 
for the polymerized branch for 2 < q < 0% due to the algebraic complexity 
of the calculation involved. Nevertheless, we are confident that there exists 
an underlying poential for this case as well, since we verified numerically, 
at a significant number of points in the field space, that the densities obey 
the required Maxwell relations for KI = 0: 

axb/aA = c~x~/#(ln K'p) 

axb/aK= ae~/a(ln K'p) (5.14) 

OXm/3R = #et/#J 
where the density e~ is defined by 

1 e,=~ (<~> v, vj) (5.15) 

The tricritical point, where the polymerization transition changes from 
second to first order, may be defined as the point where the curves given by 
Eqs. (5.12) and (5.13) meet. Thus, the tricritical condition is 

1 
(q- 1)K~-co~:(q-2)-(q- 1) ~- 1 (5.16) 

In Fig. 6, the ~ versus r phase diagrams are displayed for q = 3, 6, and 
500. The results for q = 500 are indistinguishable from the man-field results 
in the scale of the diagrams. The corresponding Xm versus r phase diagrams 
may be seen in Fig. 7. 

Although our Bethe-lattice results are classical with regard to the 
critical region, comparison of the phase diagrams for finite q >,2 with the 
one for q ~ oo shows that the differences are in accord with expectations. 
In particular, the broadening of the coexistence curve with r larger than the 
tricritical value should be noted, since it is a prediction of the scaling 
hypothesis with logarithmic corrections in the vicinity of the tricritical 
point. (2b) Of course, the unpolymerized branch of the coexistence curve still 
meets the critical line tangentially at the tricritical point, and both branches 
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of the coexistence curve meet, forming an angle smaller than ~, as is expec- 
ted for any mean-field-like theory. Nevertheless, the angle between the two 
branches of the coexistence curve increases with decreasing values of q. 
This is also in closer accord with the phase diagrams for sulfur with 
toluene, o-xylene, and triphenylmethane, and cis-decalin, (7'8'251 which show 
a rounded coexistence curve at high temperatures. Incidentally, the same 
effect is observed in a Flory Huggins theory that allows for polymeric 
rings, (26) thus providing an alternative explanation for the experimentally 
observed phase diagrams. 

Finally, it is worthwhile to perform a linear stability analysis of the 
recursion relations in the vicinity of the fixed points. Let us define the 
deviations from the fixed point, 

ARM= RM-- R, ASM= S M - S  (5.17) 

and the linearized recursion relations are 

ARM+I=fllARMq-LzASM, ARM+l-~f21ARM+f22ASM ( 5 . 1 8 )  
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with 

'~RM + 1( 
8RM+l "f12= 8SM R,S f " - dry,  ~,~' 

8SM+l Rs 
f "  aRM IR.~' 

(5.19) 

The derivatives may be evaluated from the recursion relations (3.5). 
For KI = 0, we get the following result for the unpolymerized fixed points 
(5.1): 

f~, = ( q -  1)a)xK'~/(s+~ox) 

,•2 =f2~ -- 0 (5.20) 

f22= [ ( q -  1)S/(S+ 1)](cox- 1)/(S+ cox) 
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At the polymerized fixed points (5.2)-(5.3), the derivatives are given by 

2( S + cox) 
f~ '=(q-1)coxK' ,  1 

R I1 
,f"12 = S -t- (/)~---~- (q - 1) e)x-K'pJ ( 5 . 2 i )  

(q - 2) co x 
f21 = - R S  

Kp( s + co x ) 

f 2 2 = ( q - 1 ) S  S I ( q - 1 ) ( q - 3 ) c o x K p + 2  ] 
S+ 1 coxK'p(q- 1) S+cox 

The stability limit of a fixed point is reached when the largest eigenvalue of 
the matrix f becomes equal to unity. For the unpolymerized fixed points, 
the matrix f is diagonal and the eigenvalues are 21 = Jql and 22 = f22. There 
are two possible stability limit conditions: 21 = 1 and ),2= !. Now it is 
possible to verify that ),2< 1 when 21 = 1 and that 21 < 1 when 22 = 1. 
Thus, 21 = 1 gives us the spinodal lines (5.11), whereas 22= 1 is the con- 
dition (5.12), corresponding to the second-order boundary at temperatures 
between T* and the tricritical temperature and to the stability limit of the 
unpolymerized phase above the tricritical temperature. 

The largest eigenvalue of the matrix of the linearized recursion 
relations for the polymerized phase (5.21) is equal to unity if the following 
condition is fulfilled. 

(q - I ) coRK'; 1 SoJx 

At temperatures between T* and the tricritical temperatures, condition 
(5.12) describes the stability limit of the polymerized fixed points, whereas 
at temperatures above the tricritical temperature the vanishing of the 
second factor in (5.22) occurs first and the stability limit will be given by 
Eq. (5.13). 

6. S O L U T I O N  OF THE D ILUTE n - ~ 0  V E C T O R  M O D E L  
ON THE CAYLEY TREE 

A correspondence exists (2) between the model for equilibrium 
polymerization in a solvent and the dilute n-vector model in the limit 
n ~ 0, with the Hamiltonian 

~ =  --g E Y i Y J - J E Y i - J  2 YivjSi'Sj--D2oHEViS$1, (6.1) 
(i/> i <ij) i 
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where the sum X<(j>is over nearest neighbor pairs, the v t are lsing lattice 
gas variables (v,= 0, 1), and S is a classical spin of n components with 
norm x/~ and whose first component points in the direction of the 
magnetic field H. In the formal limit n + 0, the partition function of this 
model can be written as (2a'2b) 

Z= S exp (K S viv/+~i vi ) 
{vi} <#> 

x r (N~ ,  Nb, N , ,  N, {v,}) 

where 

y~Nh(h2V~h(l)Nl 
2 2 Z ( ,  , Nh Np N1 

(6.2) 

] =  J/kT", k = K/kT,  J = A/k]', h = m o H / k ~  r (6.3) 

being the temperature of the n--+ 0 vector model. Comparison of (6.2) 
and (2,2) shows that the equivalence between the models may be 
established as 

Y= e x p ( -  �89 ) Z(K,  J, h, A) {6.4) 

if' 
j = K ~ ,  

= [#, - #o - q(Eo~ - Eoo)]/kT, 

�89 2 = KI 

R'= (2s - Eoo - Et~ ) / kT  (6.5) 

Now we will show how it is possible to solve the dilute n ~ 0 vector 
model (6.1) on the Bethe lattice, recovering the results of the direct 
calculations. Thus, we define the following partial partition functions for an 
M-generation subtree with site i at the root, where the trace is over the 
values of all spins in the subtree, with the exception of the spin Si located at 
the root 

gM{1, Si) = Tr e x p ( -  H/kT") 
S ~ S ,  
v i =  1 

gM(0)= Tr e x p ( - H / k T " )  
{v,= O) 

(6.6) 

the Hamiltonian being given by (6.1). We may then obtain recursion 
relations for the g's by constructing an ( M +  1)-generation subtree from 
q -  1 of the M-generation subtrees, 

gM+J (1, S) = Tr{exp[K+ A + JS.  S' + h S  '(1)] [gM(1, S')] u- i} 
S'  

+ [ g M ( O ) ] ~  I (6.7) 

gv+  ,(0) = Tr{exp[~ + hS  '~'~] [gv(1,  S')] q-~ } + [gM(0)] q -1 
S' 
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where K, j ,  ~, and defined in (6.3). Next, we make the following ansatz for 
the functional form of the gM, which can be shown to be right by induction 
later: 

gM(1, S ) = a M + b M S  f~), gM(O)=cM (6.8) 

It is then possible to calculate the traces in (6.7) explicitly, in the n--* 0 
limit, by expanding the function involving S', and remembering that in the 
limit n -~ 0 we should define the trace operation to be the angular average 
over the spins and that, (~a,~b) when b ~ 0, 

((SI~)) ~ )~ = cSk,o + 3k,2 (6.9) 

the 6's being Kronecker functions. Thus, in the n -~0  limit the trace 
operation is simplified considerably, and from (6.2) and (6.3) it follows that 

aM+l =C0RC0~[(1 +�89 2) a~u 1+ ( q -  1) hbMa~ -1 

+ �89  ~ 

bM + ~ =cop, o)~[,Tha q- ~ + (q - 1) ]aqM ~-bMl (6.10) 

CM+, = ~o~l-(1 + �89 2) a~4 ~ + (q - 1 ) hbMa ~ 2 

+ ~(q - 1 ) ( q - 2 )  '~q-3h2~M ~M-I']-]-CqM -1  

where co~ and cox are exp ~] and exp/~, respectively. 
The partition function may be obtained by attaching q M-generation 

subtrees together at a central site. The result is 

1 2 Zg=o.)~[aqM(l +sh  )+qhaq~v~bM+ lq(q--1)aqM-2b2]+CqM (6. l l)  

The central site magnetization, energy per spin pair, and occupancy expec- 
tation number are found to be 

and 

mm = o)~(haqM + qaqM IbM)ZM 1 

e m =  CO2 "7-1 [hbMaqM ~ + (q -- 1 )b2M aq-  2] ZM 1 

(6.12) 

(6.13) 

~b,.M = c0~E(1 + �89 q + qha q ibm + �89 -- 1) a~t 2b~t ] Z~t' (6.14) 

The comparison with the results of the direct calculation is straightforward 
if we define 

cok -  1 bM 
R M  = - -  (6.15) 

O R  a M  - -  C M 

C M(J,) R - -  a M 
S M ~  (6.16) 

a M  - -  r  
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From the recursion relations (6.10) for the a's, b's, and c's the results (3.5) 
from the direct solution follow, using the transcriptions (6.5). Also, 
(6.12) (6.14) may be written in terms of the R~t and SM, giving 

mM=c~ j 

{ [ h  ~ ~x 
x coj I + T  +qhRMSM+cox 

- - 5 - -  R~t \& ,  + ~ k / J  + k sT :+-g~;j ) 

OM=CO~ hRM sM+m ~ \SM+e)x/ J 

x Y eJ~ l+T+qhR~ 
" SMe)X 

+ q - T -  RTu \ S - - ~ /  j + LS,-~;xJ ) /  

h2 h co K q(q - 1 ) 
~QM=c~ l + T + q  R~4 sft-+-o@+ 2 

x ~ 1 + T + q h R , ~ S M + o ~  x 

~x ]~] 

(6.17) 

(6.~8) 

~ - - R 2 \ ~ - - s  J \-S-s / ) (6,19) 

These results are equivalent to (3.9) if we consider the transcriptions (6.5) 
and also the result (2a'2b~ 

r ~ = �89 + �89 (6.20) 

We conclude that both solutions of the equilibrium polymerization 
model on the Bethe lattice, the direct one and the one using the correspon- 
dence with the n ~ 0 vector model, are identical in the whole ,J, h, K, zl 
parameter space. Thus, we do not observe in our solution any b'reakdown 
of the correspondence between the models, signaling the appearance of the 
"collapsed" phase recently suggested by Gujrati, (~6'22) and there seems to be 
no reason to identify the polymerized phase obtained here with the "new" 
phase proposed inRef. 16 as is suggested in Ref. 22. 

It is interesting to notice that the following relation exists between our 
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results for the magnetization (6.17) in the thermodynamic limit and the 
density of polymers xp in (3.9), 

m = 2x~/(2K1)1/2 (6.21) 

A similar relation noted by Gujrati 1221 in his solution of the equilibrium 
polymerization model on a Bethe lattice with q = 3 led him to propose a 
suitable definition for the order parameter of the equilibrium 
polymerization problem. Here we recover this result in a more general 
situation of arbitrary q and in the presence of a solvent, suggesting that the 
order parameter could be defined as the probability of having a polymer 
end at a particular site (i.e., 2xp) in the core of the tree (not necessarily the 
central site), divided by a statistical weight of a polymer end. [In 
Gujrati's/22/Eqs. (8) and (9) for this probability, ~c must be replaced by ~1/2 
to get the correct result.] 

In the limit of a pure n--+ 0 vector model (~o~--+ oo), the recursion 
relations will be given by (3.11) and the densities (6.17)-(6.19) are, in the 
thermodynamic limit, equal to 

h + q R  
m = 1 + �89 2 + q h R  + �89 - I )R 2 (6.22) 

hR + ( q -  1)R 2 
0 = 711 + �89 2 q- q h R  + �89 - 1) R 2 (6.23) 

and 

~b, = 1 (6.24) 

It is known (ja'lb) that, viewed as a magnetic model, the n ~ 0 vector 
model exhibits regions of "thermodynamic instability," where the magnetic 
susceptibility becomes negative. In the mean-field approximation the region 
of positive susceptibility is a wedge-shaped region in the J, h plane contain- 
ing the critical point and part of the coexistence curve. Recently we have 
shown (~7) that nonclassical scaling equations of state obtained from the 
renormalization group via the e expansion have a region of negative X 
extending along the coexistence curve all the way to the critical point, and 
have suggested how this region may join with that of the mean-field 
approximation at high field. In one dimension (la) the region of negative Z is 
of still quite different shape, consisting of narrow wedges along the h axis 
through the critical point. It is therefore of some interest to obtain this 
region of negative Z for the Bethe-lattice solution, since this allows one to 
examine how the mean-field solution changes when correlations are 
introduced and see how the change to the one-dimensional behavior takes 
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place in the limit q = 2 .  It should be emphasized, however, that the 
"instability" of the nonphysical magnet does not imply any corresponding 
instability of the corresponding polymer solution. All of the ther- 
modynamic stability criteria are satisfied there, as discussed in Ref. 17. 

For the sake of simplicity we will restrict ourselves to the n --* 0 vector 
model without dilution. The magnetization of this model is given in (6.22), 
whereas the fixed-point value R of the recursion relation (3.11 ) satisfies the 
equation 

� 8 9 1 8 9  (6.25) 

The magnetic susceptibility is given by 

c?m c?m (~- ) .7  (6.26) 
\0R/zh 

and the derivatives can be readily calculated using (6.22) and (6.25), 
yielding Z as a function of q, J, h, and R. 

It is convenient to introduce the following reduced temperature for the 
magnetic model: 

f =  1 - T,(T= l -Y/~rc= 1 - ( q -  1).7 (6.27) 

Then the explicit expressions for the susceptibility on the h = 0 axis become 

f > 0 :  Z ( g , h = 0 ) -  q - ~  
(q - 1)-~ 

1 [ q(q+ 1) 
? < 0 :  Z ( ? , h = O ) = [ l _ q ? / ( q _ 2 ) ]  2 ~_lq ( q _ l ) ( q _ 2 ) ~  (6.28) 

q ( q - 2 - q ' g )  2 ] 

2~(q- l)(q- 2)23 

The susceptibility on the h = 0 axis is therefore always positive for f >  0, 
but it will be negative in some regions of the "~ < 0 semiaxis. The points on 
the h = 0, f < 0 semiaxis where the susceptibility vanishes are the negative 
values of the expression 

(6q - 4)(q - 2) 
~o = 4q(q + 1 )(q - 2) - 2q 3 

4q(q -- 2)[2q(q + 1 ) -  q3/(q_ 2)]/]1/2] 
x { l + [ l q  (~q--~-)7 J ; (6.29) 
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Fig. 8. Zero-suscept ib i l i ty  curves in the f - 1 - TJT, h space for the Bethe lat t ice so lu t ion  for 

n --, 0 vector  model  wi thou t  di lut ion.  The curves shown are (a) q --* m (mean field), (b) q = 6, 

and (c) q - 3 .  The ha tched region comprises  points  of posi t ive suscept ibi l i ty  for the model  

with q = 3. 

For q < 1 +  �89 there are two negative values for "?o, and 7~ 
changes sign twice, being positive at very low temperatures. In Fig 8 the 
Z = 0  curves are depicted for q---, o% q =6 ,  and q =  3. In the mean-field 
limit q ~  they are straight lines h =  _2-1 /2 (?+  1); for q = 6  and q = 3  
the curves are slightly curved. That  the value of r at which )~(h = 0) changes 
sign becomes less negative as correlations are included is consistent with a 
recent conjecture (~v) concerning the shape of the )~ = 0 curves for the n --, 0 
vector model when both fluctuations and corrections to scaling are taken 
into account. The Z > 0 region for q = 3 is hatched in the figure. It should 
be noted that for q = 3 there is another region of positive susceptibility for 
? <  -4.44152...  which is outside the range of values for ? in Fig. 8. 

In Fig. 9 (curve a), we present the zero-susceptibility curves for the 
one-dimensional n--* 0 vector model without dilution. The susceptibility in 
this case may be calculated similarly to the calculation above, by setting 
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Fig. 9. (a) Zero-susceptibility curves in the -?, h space for the one-dimensional  (q = 2) b--,  0 
vector model without  dilution. In the hatched region the susceptibility is positive. (b) The cur- 
ves of zero susceptibility for the model with q = 2.2. 

q = 2 in expressions (6.22) for the magnetization and in the equation (6.25) 
for the fixed-point values of R. The general expressions for the suscep- 
tibility of the one-dimensional model are too lengthly to be included here, 
but for h = 0 they reduce to 

~>0: z(e, h =0)  = (2 -~ ) / e  
(6.30) 

~<0:  Z(ff, h = O ) =  - 2 / ~  

[The expressions for the susceptibility on the h = 0, ~ < 0 semiaxis in Eqs. 
(3.20) and (3.43) of Ref. 14 contain an error: the numerator 2J  should be 
replaced by 2.] Expressions (6.30) show that the susceptibility for q =  2 is 
always nonnegative on the h = 0 axis; the regions of negative susceptibility 
are located at nonzero magnetic field. As an illustration, we show in Fig. 9 
the curves of zero susceptibility for a model with q = 2.2, showing the two 
regions of positive susceptibility quite close to each other. 

It should be stressed that, to study the one-dimensional model, one 
must take q = 2 before setting h = 0, since different results may be obtained 
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if the limit q - .  2 is taken in the final expression for the thermodynamic 
quantities for general q. In particular we note that 

lim lim x(q'~, h; q) = -1/'~ (6.31) 
q ~ 2  h ~ 0  + 

when f < 0, which is different from the one-dimensional result (6.30). The 
limits q-~ 2 and h--* 0 are not interchangeable for f < 0. The delicacy of 
this limit is apparent already in Eq. (6.25) for R. For q > 2 the limit h ~ 0 
implies R --, 0 for ~ ~> 0, which in turn implies that m in Eq. (6.22) tends to 
0. For ~<0,  Eq. (6.25) admits the solution R =  _ + [ - 2 ~ / ( q -  1 ) ( q - 2 ) ]  ~/2 
as h -*0  for q > 2 ,  which leads to  m ~  ( - 2 " c )  1/2 for ~ < 0  and h = 0 ,  and to 
m(h--.O, ~ < 0 ) ~ 0  as 1 ~ 2 .  However, if the limit q--,2 is taken for 
Eq. (25) before h --+ 0, then the limit h ~ 0 gives R = 0 for both r > 0 and 
r < 0 ,  but yields R ~  +[J/(q- 1)] 1/2 as h ~ 0  with ~=0.  This in turn gives 
the correct limit in one dimension m(h-+0 +, ~ = 0 ) =  1. 

7. D ISCUSSION 

The model proposed by Wheeler and Pfeuty (2a'2bi for equilibrium 
polymerization in solution is solved exactly on the Bethe lattice with coor- 
dination number q. Although the solution is direct, we also show that the 
solution of an equivalent dilute n--* 0 vector model on the Bethe lattice 
leads to the same results. The Bethe-lattice solution becomes identical to 
the mean-field results in the limit of infinite coordination number (q -~ oo) 
and to the solution of the one-dimensional model when q=2 .  Phase 
diagrams for finite q >  2 show differences, indicating increased 
cooperativity when compared with the ones obtained by the mean-field 
approach, although the exponents remain classical. 

Although the Bethe-lattice solution displays classical critical 
exponents, it should be stressed that first-neighbor correlations are treated 
exactly in the Bethe Peierls approximation. This is of some significance for 
the equilibrium polymerization problem since the magnetic first-neighbor 
spin-spin correlations are directly related to the density of monomers 
incorporated into polymers ebb, [see expression (6.20)]. 

The method presented by Gujrati t22) for q--3 can, in principle, be 
generalized for any q, but for each new value of q a separate underlying 
Ising model has to be considered, so that the procedure is unnecessarily 
tedious for general q. The method presented here has the advantage that it 
proceeds naturally and straightforwardly for any q, with q as a parameter 
in the theory, thus facilitating direct comparisons in the one-dimensional 
(q =2)  and mean-field (q--* oo) limits. 
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A P P E N D I X A .  O N E - D I M E N S I O N A L  L I M I T  

The recursion relations (3.5) and densities (3.9) of the solution of the 
model on the Bethe lattice become, for q = 2, 

(2K,)~/2 K~[ SM + cox] + cogK'pRM 
RM + ~ = (1 + K,)[SM + cox] + COR(2K, )1/2 RM 

(A.l) 
SM+ l 

SM+I = 093{(1 + KI)[SM + cox] + COR(2K1)I/2RM} 

and 
X,,,M= 1 -- [SM+ 1] 2 

X ( [SM 'JV  112 -I- CO:~{(1 + K I ) [ S M + C O R ]  2 

+ 2(2K1)~/2CORRM[SM+coX ] +coKRTu} ) 2  , -~ 

xp, M = coa{K, [SM + COX] 2 + (2K1)1/2 CORRM[SM ~_ COX] } 

x ([SM+ 1]2+cos{(1 +K,)[SM+COR] 2 (A.2) 

+ 2(2K,) '/a CORRM[SM+CO~-] + CO2R2})- '  

2 2 xh. .  = co3{ (2K~)1/2 coRRM[ SM + coX] + CORRM} 

• ( [ S M +  1 1 2 + ( O 3 { ( 1  + K 1 ) [ S M f f - C O R ]  2 

2 2 )--I + 2 ( 2 K  1 )1/2 C O R R M [ S M  jr_ (DR] + CORRM} 

In the pure solute limit c o a ~  0% the one-dimensional equilibrium 
polymerization results/~81 are recovered. In the particular case K~ = 0  the 
recursion relations reduce to 

' 1 S M +  1 
c~ RM, $44+~ (A.3) R M +  ! -- �9 -- 

S M ~- O R (2) 3 S M  ~- (.O R 

We notice that the step-function behavior already present in the pure 
monomer  case ~ls~ happens also when solvent is present. The recursion 
relation for R will have two fixed points, R = 0 (unpolymerized) and R = c~ 
(polymerized). The unpolymerized fixed point will be attained whenever 

CORKp/(S+ cox) < 1 (A.4) 

and a first-order transition to a phase with r = 1 occurs when the coef- 
ficient equals unity. Since, at the fixed point 

(1 -- c03coR) -- [(1 - ooacoR) 2 + 4co3] t/2 
S =  > 0  (A.5) 

2co3 

822/46/1-2-3 
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the phase transition happens for K'p/> 1, the equality being valid for the 
pure solute limit. 

A P P E N D I X  B. D E R I V A T I O N  OF T H E  M E A N - F I E L D  FREE 
E N E R G Y  

We show in this Appendix how the free energy can be obtained from 
the man-field fixed-point conditions (3.22). For h = 0, these conditions are 

qYmco~ exp(qKx,) 
m = 1 + [1 + �89 exp(qKx, )  (B.I) 

(1 -x.~) 1= 1 + o ) 3 e x p ( q K x , ) [ 1  +�89 2] 

The solutions may be found in two branches 

X 5, 

m = 0: co& = (1 --xs) exp(qKx~) (B.2) 

m e 0 :  ~oj~- (B.3) 
(1 - x , )  qY exp(qKx, )  

Now, since we have for the free energy g(z, x,) the relation 

3 = (c?g/Ox,)e (B.4) 

it is possible to obtain the free energies of the two branches by integrating 
over the fields, 

go= f ~odx , .=  l 2 �9 - ~ q K x , + x ,  l n x , + ( 1 - x s + ( l - x ~ ) l n ( 1 - x , , . ) + C o  

(B.5) 

g ~ = f 3 ~ dx,  = - �89 - x,(ln q J -  1) + (1 - Xs) ln(l - Xs) + C I 

where Co and C1 are arbitrary functions of f only. The Legendre trans- 
forms of these free energies 

fo,~(~, 3 ) =  go,~(~, x , ) -  3o,~ x,  

are 

fo = �89 Kx2 + ln(1 - x,) + C o 

f~ = �89 2 + x~ + ln(1 - x,) - C1 
(B.6) 
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Now the polymerized ( m ~ 0 )  and unpolymerized regions merge con- 
tinuously at the critical line, which is given by 

~o~o = o~,  --+ qJx  S = 1 (B.7) 

and, arbitrarily fixing Co = 0, by imposing continuity of the free energy at 
the critical line, we obtain 

__ 1 2 
f o  - 7qKxs + ln(1 + xs) (B.8) 

l = i  2 ~q.Kx s + (x~ . -  1~q J ) +  ln(1 - x s )  

Now, from (B.1) we notice that, for m e 0 ,  

�89 2 = x ~ -  1/qY (B.9) 

allowing us to rewrite f l  as follows: 

j ,  = 7qKx s l  2 + �89 + ln(1 - xs) (B.10) 

which correspond to the mean-field result (5.17) in the paper by Wheeler 
and Pfeuty. (2b) 
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